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Abstract 

Background Malaria is a significant public health challenge in Uganda, with Plasmodium falciparum (P. falciparum) 
responsible for most of malaria infections. The high genetic diversity and multiplicity of infection (MOI) associated 
with P. falciparum complicate treatment and prevention efforts. This study investigated temporal changes in P. falci-
parum genetic diversity and MOI across three sites with varying malaria transmission intensities. Understanding these 
changes is essential for informing effective malaria control strategies for the different malaria transmission settings.

Methods A total of 220 P. falciparum‑positive dried blood spot (DBS) filter paper samples from participants in a study 
conducted during 2011–2012 and 2015–2016 were analyzed. Genotyping utilized seven polymorphic markers: Poly‑α, 
TA1, TA109, PfPK2, 2490, C2M34–313, and C3M69–383. Genetic diversity metrics, including the number of alleles 
and expected heterozygosity, were calculated using GENALEX and ARLEQUIN software. MOI was assessed by count‑
ing distinct genotypes. Multi‑locus linkage disequilibrium (LD) and genetic differentiation were evaluated using 
the standardized index of association  (IA

S) and Wright’s fixation index  (FST), respectively. Statistical comparisons were 
made using the Kruskal–Wallis test, and temporal trends were analyzed using the Jonckheere–Terpstra test, with sta‑
tistical significance set at p < 0.05.

Results Of the 220 samples, 180 were successfully amplified. The majority of participants were males (50.6%) 
and children aged 5–11 years (46.7%). Genetic diversity remained high, with mean expected heterozygosity  (He) 
showing a slight decrease over time (range: 0.73–0.82). Polyclonal infections exceeded 50% at all sites, and mean MOI 
ranged from 1.7 to 2.2, with a significant reduction in Tororo (from 2.2 to 2.0, p = 0.03). Linkage disequilibrium showed 
a slight increase, with Kanungu exhibiting the lowest  IA

S in 2011–2012 (0.0085) and Jinja the highest (0.0239) in 2015–
2016. Overall genetic differentiation remained low, with slight increases in pairwise  FST values over time, notably 
between Jinja and Tororo (from 0.0145 to 0.0353).
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Background
Although the malaria burden in Uganda steadily declined 
in the last two decades [1], malaria remains a significant 
public health concern [2]. According to the World Health 
Organization (WHO) Malaria Report 2023, there were 
249 million malaria cases recorded globally, with 233 mil-
lion occurring in sub-Saharan Africa (SSA), contributing 
to an estimated 580,000 out of 608,000 malaria-related 
deaths worldwide in 2022 alone. Uganda accounted for 
5% of global malaria cases and ranked as the third-high-
est contributor to malaria cases [3]. More than 90% of 
these malaria cases are caused by Plasmodium falcipa-
rum [4], which poses high morbidity and mortality com-
pared to other species [5].

Malaria control is hindered by several factors, includ-
ing the high genetic diversity of P. falciparum parasites, 
the frequent occurrence of multiplicity of infection 
(MOI). MOI, which is the presence of multiple genetic 
variants or genotypes within a single infection [6], com-
plicates efforts to control the disease. It usually occurs 
in two ways: when an individual is bitten by different 
mosquitoes carrying unique parasite strains (superinfec-
tion), or when a single mosquito transmits multiple dis-
tinct genotypes in a single bite (co-transmission) [7, 8]. 
The genetic diversity of P. falciparum arises primarily 
from genetic recombination during the parasite’s lifecy-
cle in the mosquito [9]. Increased genetic recombination 
leads to low linkage disequilibrium (LD) within parasite 
populations, meaning that alleles at different loci become 
more randomly associated. As a result, it becomes less 
likely for specific genetic variants to be inherited together 
[10–12].

The presence of diverse and multiple P. falciparum 
strains within an individual enhances parasite viru-
lence and contributes to the pathology of malaria [13, 
14]. Parasite diversity also plays a significant role in the 
development of drug resistance [15], posing major chal-
lenges to malaria control and elimination efforts, such 
as the use of artemisinin-based combination therapies 
(ACTs) and long-lasting insecticide-treated bed nets 
(LLINs) [16]. Furthermore, the extensive genetic vari-
ability of P. falciparum vaccine targets complicates the 
development of an effective vaccine [17, 18]. There-
fore, understanding P. falciparum genetic diversity and 
MOI at the population level, as well as the dynamics of 
this diversity, is crucial for informing malaria control 

strategies [19]. In addition, longitudinal analysis of LD 
offers valuable insights into the temporal changes in 
the genetic structure of P. falciparum parasite popula-
tions [20]. Advanced techniques such as whole genome 
sequencing (WGS) and targeted deep sequencing are 
sensitive methods for assessing parasite genetic  diver-
sity. However, these methods remain costly and 
inaccessible in many SSA regions [21]. In contrast, 
microsatellite markers, including Poly-α, TA1, TA109, 
and PfPK2, offer cost-effective and unbiased alterna-
tives for evaluating P. falciparum genetic diversity [10, 
11, 22]. These markers, which are neutral polymorphic 
loci abundant in the P. falciparum genome, consist of 
repeat motifs like [TA]n, [T]n, and [TAA]n [23]. Due 
to their high variability, they allow for differentiation of 
parasite strains and the assessment of MOI across vari-
ous genomic regions.

Previous studies have shown that the genetic diver-
sity of P. falciparum varies across individuals, popula-
tions, transmission settings, as well as with fluctuations 
in parasite prevalence [24–27]. This variability makes 
P. falciparum genetic diversity and MOI effective tools 
for tracking changes in malaria transmission intensity 
[28–30], and assessing the impact of interventions on 
malaria transmission patterns [31–33]. In areas with 
intense malaria transmission, such as Kenya [34] and 
Senegal [35], high genetic diversity and the presence of 
multiple parasite genotypes are consistently observed. 
In these regions, P. falciparum parasites are character-
ized by weak LD, high genetic diversity, and minimal 
population differentiation, which are key indicators of 
high malaria  transmission  intensity [10]. Conversely, 
parasites circulating in low malaria transmission areas, 
such as São Tomé, exhibit reduced genetic diversity, 
strong LD, and significant population differentiation 
[36]. While these trends reflect the influence of malaria 
transmission intensity on the genetic structure of P. fal-
ciparum populations, similar patterns have not always 
been observed in other low transmission regions [37]. 
In addition, P. falciparum MOI tends to decrease as 
malaria transmission intensity declines over time [38]. 
These patterns are particularly relevant for Uganda, 
where malaria transmission intensity varies consider-
ably across regions with some areas experiencing high 
transmission, while others have low transmission [39]. 
Understanding the dynamics of P. falciparum genetic 

Conclusions This study highlights the genetic diversity and MOI of P. falciparum in Uganda’s malaria transmission 
settings, noting a slight decrease in both genetic diversity and MOI overtime. Continued surveillance and targeted 
control strategies are essential for monitoring the impact of malaria control efforts in Uganda.
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diversity and MOI within Uganda is critical for effective 
malaria control and elimination strategies.

Despite the importance of genetic diversity and MOI 
as essential tools for monitoring malaria transmission, 
there is limited data on the temporal changes in P. falci-
parum genetic diversity and MOI in Uganda, particularly 
in relation to fluctuating transmission intensities. Most 
studies have primarily focused on malaria case numbers 
from high transmission areas [40–42], which may not 
offer a comprehensive understanding of malaria trans-
mission dynamics over time. In addition, research on 
P. falciparum genetic diversity and MOI in Uganda has 
mostly been cross-sectional, examining single timepoints 
[14, 22, 43]. Consequently, there is a gap in knowledge 
regarding how these factors evolve over time within the 
country. This study addressed these gaps by investigating 
the dynamics of P. falciparum genetic diversity and MOI 
using isolates from participants enrolled at three sites 
with varying transmission intensities, over two distinct 
time periods: 2011–2012 and 2015–2016. The aim was to 
better understand how transmission intensity influences 
parasite genetic diversity and MOI in Uganda.

Methods
Study settings
This study utilized dried blood spot (DBS) samples col-
lected from participants enrolled in the Program for 
Resistance, Immunology, Surveillance, and Modeling 
of Malaria (PRISM) study at two distinct timepoints: 
2011–2012 and 2015–2016. Participants were recruited 
from three sub-counties with varying malaria transmis-
sion intensities, determined by the number of malaria 
cases: Walukuba in Jinja District, Kihihi in Kanungu 
District, and Nagongera in Tororo District. Walukuba is 
a relatively low-transmission, peri-urban area near Lake 
Victoria in the south-central region of Uganda. Kihihi, a 
rural area near Bwindi Impenetrable National Park in the 
southwest, has moderate transmission intensity. In con-
trast, Nagongera, a rural area near the border with Kenya 
in the southeast, experiences high transmission inten-
sity (Fig. 1). A total of 220 DBS samples were retrieved, 
with the distribution across study sites and time periods 
as follows: 40 samples from Walukuba (Jinja District), 35 
from Kihihi (Kanungu District), and 33 from Nagongera 
(Tororo District)  during the 2011-2012 study  period. In 
the 2015–2016 period, 35 samples were collected from 
Walukuba, 39 from Kihihi, and 38 from Nagongera.

Study population
Participants were enrolled in the PRISM study at two dis-
tinct timepoints: from August 2011 to December 2012 
and from July 2015 to December 2016. Detailed infor-
mation about the study population has been described 

previously [39]. Briefly, all households in the three sub-
counties were enumerated and mapped, and 100 house-
holds were randomly selected for participation. Children 
aged 0.5–10 years, along with one primary adult caregiver 
from each household, were enrolled. This participant 
recruitment approach was designed to provide a com-
prehensive understanding of factors influencing malaria 
infection and transmission patterns across different age 
groups within households. Participants were encouraged 
to visit a clinic open 7 days a week for medical care. Rou-
tine visits were conducted every 3 months, during which 
standardized evaluations were performed. Blood samples 
were collected by finger prick for thick blood smears, 
hemoglobin measurements, and DBS filter paper samples 
for future molecular studies. At each visit, participants 
with a fever (tympanic temperature > 38.0 °C) or a history 
of fever within the previous 24 h had a thick blood smear 
read immediately. If the smear was positive, the patient 
was diagnosed with malaria and treated according to 
national guidelines.

Laboratory methods
Laboratory assays, including malaria microscopy and par-
asite genotyping, were conducted at the Molecular Biol-
ogy Research Laboratory at the Infectious Diseases 
Research Collaboration (IDRC) in Kamapala-Uganda.

Determination of parasite density
Microscopy slides for parasite density and species detec-
tion were prepared using a 10% Giemsa solution and 
stained for 30  minutes, with both thick and thin blood 
films being prepared. Experienced microscopists exam-
ined the slides under a light microscope at 100 × oil 
immersion. P. falciparum parasite density was deter-
mined by counting asexual parasites against 200 leuko-
cytes. The parasite density per µL of blood was calculated 
by multiplying the total parasite count by 40, assuming 
an average of 8,000 leukocytes per µL of blood [44]. For 
quality control, each smear was independently read by 
two microscopists. Though discrepancies—defined as 
differences in species diagnosis, parasite density > 50%, 
or presence of parasites—were rare, any identified dis-
crepancy prompted a review by a third microscopist. To 
minimize discrepancies, all microscopists underwent 
thorough training on standardized techniques and para-
site identification prior to the study, and regular assess-
ments were conducted to ensure consistent performance. 
Final parasitemia was determined by averaging the read-
ings of the two microscopists or, in cases of disagree-
ment, by averaging the third microscopist’s reading with 
that of the closest of the initial two. In cases where the 
third microscopist’s reading was significantly different,  
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it was used as the final determination for parasite density 
and or species.

Selection of the samples for molecular analysis
A stratified random sampling approach was employed 
to ensure that the molecular analysis included partici-
pants from diverse demographic and clinical groups, 
reflecting the broader study population. A total of 220 
DBS filter paper samples were selected from two study 

periods: 2011–2012 and 2015–2016. The selection cri-
teria included availability of DBS filter paper sample, 
P. falciparum mono-infection positivity, and sufficient 
demographic and clinical data for each participant. To 
achieve a representative sample, the selection was strat-
ified based on key factors, including age, gender, geo-
graphical location, and study period. The selected DBS 
filter paper samples were then linked to participants’ 
demographic and clinical information via cohort ID, as 
well as the date and year of sample collection.

Fig. 1 Map of Uganda showing the malaria endemicity of the study sites at the time of sample collection. Adapted from Kamya et al. [39]
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DNA extraction
Genomic DNA of P. falciparum was extracted from 
dried blood spots (DBS) using Chelex 100 Resin (Sigma-
Aldrich, USA), following the method described by 
Musapa et  al.[45]. The Chelex extraction method was 
chosen for its simplicity, cost-effectiveness, and efficiency 
in processing DBS samples. It effectively isolates P. falci-
parum DNA, reduces PCR inhibitors, and requires fewer 
reagents, offering a practical and reliable alternative to 
silica-based or column-based methods. Briefly, 6  mm 
discs were punched out from the DBS into 1.5 mL micro-
centrifuge tubes containing 1 mL of 1X phosphate-buff-
ered saline (PBS) and incubated overnight at 4  °C. The 
punching machine was cleaned with DNase, and a clean 
blank piece of Whatman 3MM filter paper was pre-cut 
between samples to prevent cross-contamination. The 
discs were washed twice with 1 mL PBS and then boiled 
at 99  °C in 200 μL of 20% Chelex (Sigma-Aldrich, USA) 
in DNase/RNase-free water. After a final centrifugation 
step (14,000 × g for 1 min), the extracted DNA was trans-
ferred into a labelled 0.6  mL microcentrifuge tube with 
a 100 µL elution volume and then stored at − 20 °C until 
further use. Detection and confirmation of P. falciparum 
was performed through genotyping of P. falciparum 18S 
rRNA using nested PCR [46]. As an internal control, 
every eighth sample consisted of a blank filter paper sam-
ple that was cut, extracted, and processed alongside the 
field samples to identify any contamination that could 
lead to false positives.

Microsatellite genotyping
A panel of seven neutral polymorphic microsatellites 
of P. falciparum was genotyped, including TA1 (Chr6), 
Poly-α (Chr4), PfPK2 (Chr12), TA109 (Chr6), 2490 
(Chr10), C2M34–313 (Chr2), and C3M69–383 (Chr3). 
Primers labeled with HEX or 6-FAM were used for geno-
typing at the Infectious Diseases Research Collabora-
tion (IDRC) Molecular Biology Laboratory in Kampala, 
Uganda (Additional file 1, Table S1). The microsatellites 
Poly-α, TA1, TA109, PfPK2, and 2490 were nested, while 
C2M34–313 and C3M69–383 were unnested.

For the nested PCR reactions, the primary reaction for 
each marker was carried out in a total volume of 15 µL, 
containing 10.5 µL of molecular-grade PCR water, 1.5 µL 
of 10 × reaction buffer, 0.3 µL of dNTPs (1.25 mM), 0.3 µL 
of Forward Primer (10  μM), 0.3  µL of Reverse Primer 
(10 μM), 0.25 µL of AmpliTaq Gold (5 U/µL), and 2 µL 
of DNA template. The Round 1 PCR conditions were as 
follows: 94 °C for 2 min, followed by 25 cycles of (94 °C 
for 30 s, 42 °C for 30 s, 40 °C for 30 s, and 65 °C for 40 s), 
and ending with 65 °C for 2 min. The secondary reaction 
contained the same reagents as the primary reaction, 

with the addition of 0.3 µL of the labeled primer for each 
marker. A 2 µL aliquot of the primary reaction product 
was used in a final volume of 15 µL for the nested PCR 
reactions. The Round 2 PCR conditions were: 94  °C for 
2 min, followed by 25 cycles of (94 °C for 20 s, 45 °C for 
20 s, and 65 °C for 30 s), and ending with 65 °C for 2 min.

PCR conditions for the C2M34–313 and C3M69–383 
reactions were as follows: 94  °C for 2  min, followed by 
5 cycles of (94  °C for 30 s, 50  °C for 30 s, and 60  °C for 
30 s), then 40 cycles of (94 °C for 30 s, 45 °C for 30 s, and 
60 °C for 30 s), and ending with 60 °C for 2 min. A 2 µL 
sample of the PCR product was then run on a 2% agarose 
gel to confirm amplification before being analyzed on 
the sequencer. The amplified PCR products were trans-
ferred to safe-lock DNA amplicon storage tubes, securely 
wrapped in aluminum foil, and sent to Inqaba Biotec in 
South Africa for microsatellite fragment analysis using an 
ABI capillary electrophoresis platform.

Microsatellite analysis
Microsatellite fluorescent-labeled PCR products were 
analyzed using an Applied Biosystems ABI 3730xl 
Genetic Analyzer (Thermo Fisher Scientific, Waltham, 
MA, USA) to determine their length. The peaks were 
scored using GeneMarker HID V2.9.5 software. For sam-
ples that produced more than one peak, the highest peak 
was defined as the dominant allele. Additional peaks were 
classified as minor alleles if their peak heights exceeded 
200 relative fluorescence units (RFU) and were > 20% of 
the height of the dominant peak. This threshold was used 
to identify minor alleles, which may represent clones 
present at lower frequencies but still contribute to the 
genetic diversity of the infection. The identification of 
these additional minor alleles, including third and fourth 
alleles, was based on the relative peak heights at each 
microsatellite locus. Peaks that met these criteria were 
recorded as distinct alleles.

P. falciparum genetic diversity
The genetic diversity of P. falciparum, usually result-
ing from genetic recombination [47], was assessed in 
each parasite population from each study site by calcu-
lating the mean number of alleles  (Na), and the number 
of effective alleles  (Ne) across each locus. These metrics 
were calculated from the predominant allele data set 
using GENALEX 6.5 software [48]. Expected heterozy-
gosity  (He), defined as the probability that two randomly 
selected clones from a population will carry distinct 
alleles at each marker locus, was calculated using ARLE-
QUIN software version 3.11 [49] with the formula:

He = [n/(n − 1)]
[

1−�p2i

]

,
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where ‘n’ represents the number of isolates analyzed and 
‘pi’ is the frequency of the  ith allele in a given population. 
 He values range between 0 (no genetic diversity) and 1 
(high genetic diversity) [10]. The mean  Na,  Ne, and  He 
values for each study site were computed as the mean of 
the values from each locus.

P. falciparum MOI
P. falciparum MOI was defined as the number of distinct 
parasite genotypes co-existing within a given infection 
[50]. Isolates with only one allele were considered mono-
clonal infections, while those with more than one allele 
were classified as polyclonal infections [51]. The MOI for 
each infection was determined by identifying the highest 
number of alleles observed across any of the microsatel-
lite markers used in the analysis. This maximum allele 
count was considered the MOI for that particular infec-
tion. To assess the parentage of polyclonal infections, we 
counted the number of isolates with more than one allele 
for each microsatellite marker that successfully amplified. 
The results were then summarized across the different 
study sites and time periods.

Analysis of multi‑locus linkage disequilibrium and genetic 
differentiation
Multi-locus linkage disequilibrium (LD) measured as the 
standardized index of association  (IA

S) was calculated 
using the program LIAN version 3.5 [52] for the whole 
data set. This index was calculated using the formula:

where VE is the expected variance of the  nth number of 
loci for which two individuals differ. VD is the observed 
variance. The significance of the  IA

S  values was tested 
using the Monte Carlo method. Genetic diferentiation 
was assessed using Wrights fixation index  (FST) calcu-
lated using ARLEQUIN software version 3.11 [49]. The 
 FST values ranging from 0 to 0.05 indicates low genetic 
variability, 0.05–0.15 indicates moderate genetic variabil-
ity, 0.15–0.25 indicated high great genetic differentiation 
and > 0.25 indicates substantial genetic differentiation 
[53].

Data analysis
Participants’ demographic and clinical data, includ-
ing age, gender, parasite density, and hemoglobin levels, 
were extracted from the primary PRISM cohort data-
base and exported to STATA version 17 (Stata Corp., 
College Station, TX, USA) for analysis. These data were 
summarized using descriptive statistics, such as means 
and proportions. Microsatellite data were retrieved from 
the ABI 3730xl Genetic Analyzer. Genetic analysis was 

ISA− = (1/n− 1(VD/(VE) − 1))

performed only on samples, where at least five microsat-
ellite markers were successfully amplified. To minimize 
bias associated with multiple infections, only the pre-
dominant alleles were included in the analysis. Samples 
with incomplete or poor-quality amplification, or failure 
to amplify on at  least 3  markers, were excluded from 
further analysis to ensure the accuracy and reliability of 
the data. Statistical comparisons of P. falciparum genetic 
diversity (including the mean  Na,  Ne and  He) and MOI, as 
measured by mean MOI and the percentage of polyclonal 
infections, were performed using Kruskal–Wallis test. 
Temporal trends in these indices were assessed using the 
Jonckheere–Terpstra test. Statistical significance was set 
at p < 0.05.

Results
Characteristics of the study population
Of the 220 P. falciparum positive samples selected, 180 
(81.8%) successfully amplified on at least five microsatel-
lites and were included in the final analysis. Of the 180 
samples, 91 (50.6%) were from male participants, and 
many (46.7%) were from participants aged 5–11  years 
of age. Overall, the mean parasite densities in the study 
areas decreased over time. In the 2011–2012 study 
period, the mean parasite counts were 17,034 para-
sites/µL in Walukuba Subcounty (Jinja District), 36,118 
parasites/µL in Kihihi Subcounty  (Kanungu District), 
and 68,240 parasites/µL in Nongongera Subcounty 
(Tororo District) (Table  1). By the 2015–2016 period, 
these counts had declined to 14,882.4 parasites/µL in 
Walukuba, 20,694 parasites/µL in Kihihi, and 23,586.2 
parasites/µL in Nongongera (Table 1). Regarding hemo-
globin (Hb) levels among study participants, Walukuba 
Subcounty experienced an increase from 11.3 to 11.7 g/
dL, and Nongongera Subcounty rose from 11.1 to 11.3 g/
dL. In contrast, Kihihi Subcounty noted a decrease in 
mean Hb levels from 10.9 to 10.7 g/dL during the same 
period (Table 1).

Temporal changes in P. falciparum genetic diversity 
between 2011–2012 and 2015–2016 study periods 
across sites
Overall, P. falciparum genetic diversity remained con-
sistently high across all study sites over time, with mean 
 He values consistently exceeding 0.7 (Fig. 2). However, a 
slight decline in the mean values of  Na,  Ne, and  He was 
observed across all study sites. Importantly, no signifi-
cant differences were observed in mean  Na,  Ne, or  He 
between the study periods, nor were there any significant 
temporal trends in these indices across the two study 
periods. These findings were supported by the non-
significant results from both the Kruskal–Wallis and 
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Jonckheere–Terpstra tests (p > 0.05) (Fig.  2; Additional 
file 2, Table S2).

Temporal changes in P. falciparum MOI between the 2011–
2012 and 2015–2016 study periods across sites
Overall, the percentage of P. falciparum polyclonal infec-
tions in the three study areas remained consistently high, 
exceeding 50%, which indicates a robust polyclonal para-
site population over time. During the study periods, there 
was a significant temporal decrease in the percentage of 
polyclonal infections in Kanungu, declining from 56.1 to 
52.8% overtime (p = 0.01). In contrast, Jinja and Tororo 
showed no significant temporal differences in the per-
centage of polyclonal infections (p > 0.05). Regarding P. 
falciparum mean MOI, there was a significant temporal 
reduction in Tororo, where it decreased from 2.2 to 2.0 
overtime (p = 0.03) (Fig.  3; Additional file  3, Table  S3). 

However, Jinja and Kanungu did not exhibit significant 
changes in mean MOI over time (p > 0.05) (Fig. 3).

Temporal changes in P. falciparum population multi‑locus 
linkage disequilibrium and genetic differentiation 
between the 2011–2012 and 2015–2016 study periods 
across study sites
Temporal changes in linkage disequilibrium (LD) among P. 
falciparum populations
A multilocus index of association analysis was performed 
to assess the non-random associations of all microsatel-
lite loci in the data set. The statistical significance of LD 
was tested using 10,000 Monte Carlo simulations. Over-
all, there was a slight increase in LD (based on the stand-
ardized index of association  (IA

S)) across the study  sites 
over time. During the 2011–2012 period, Kanungu 
recorded the lowest  IA

S at 0.0085, while Jinja had the 
highest significant  IA

S value at 0.0233 (p = 0.01). In the 

Table 1 Demographic characteristics of the study participants whose samples are included in the analysis

Characteristic Isolates collected 2011–2012 Isolates collected 2015–2016 Overall

Jinja (n = 38) Kanungu (n = 27) Tororo (n = 24) Jinja (n = 26) Kanungu (n = 34) Tororo (n = 31)

Age in years

  < 5 years 21 14 14 8 12 11 80

 5–11 years 11 13 9 15 22 14 84

  ≥ 18 years 6 0 1 3 0 6 16

Gender (%)

 Male 52.6 55.6 58.3 50 47.1 41.9 50.9

Mean Axillary tempera‑
ture, 0c (SD)

38.6(0.9) 38.4(1.8) 38.5(0.8) 36.8(0.5) 38.3(1.2) 37.3(0.9) 37(1.2)

Mean Hb g/dL(SD) 11.3(1.9) 10.9(2) 11.1(1.5) 11.7(1.7) 10.7(2.4) 11.3(2.3) 11.1(2.1)

Mean parasite density/
µL (SD)

17,034 (2,736.1) 36,118 (4,157.9) 68,240 (8,491) 14,882.4 (1,181) 20,694 (2,197.1) 23,586.2 (1,927) 30,092 (2,750)

Fig. 2 Changes in P. falciparum mean  He values between 2011–2012 and 2015–2016 study periods across sites
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2015–2016 study period, Kanungu’s  IA
S rose to 0.0114, 

and in Tororo it increased to 0.0168. Jinja also expe-
rienced a slight increase in  IA

S, from 0.0233 to 0.0239 
(Table 2).

Temporal changes in genetic differentiation of P. falciparum 
populations
Overall, the genetic differentiation of the P. falciparum 
population among the study  sites was low, with a slight 

increase between the study periods. In the 2011–2012 
period, the  FST values were low: 0.0275 between Jinja 
and Kanungu, and 0.0145 between Jinja and Tororo, with 
the highest differentiation at 0.0503 between Kanungu 
and Tororo. In the 2015–2016 study period,  FST val-
ues showed modest increases: 0.0384 between Jinja and 
Kanungu, and 0.0353 between Jinja and Tororo. The 
highest differentiation remained between Kanungu and 
Tororo, increasing to 0.0585 (Table 3).

Discussion
P. falciparum genetic diversity and MOI are influenced 
by several factors, including malaria transmission inten-
sity and the effectiveness of control interventions [31, 
54]. To our knowledge, no studies have assessed tempo-
ral changes in P. falciparum genetic diversity and MOI 
across different malaria transmission areas in Uganda. 
This study examined temporal  changes in P. falcipa-
rum  genetic diversity and MOI of malaria parasites in 
regions with varying transmission intensities. The find-
ings revealed slight decreases in both genetic diversity 

Fig. 3 Changes in P. falciparum mean MOI and the percentage of polyclonal infections between 2011–2012 and 2015–2016 study periods 
across sites

Table 2 Changes in P. falciparum parasites’ linkage 
disequilibrium between the 2011–2012 and 2015–2016 study 
periods across study sites

Site/population 2011–2012 2015–2016

IA
S P value IA

S P value

Jinja 0.0233 0.06 0.0239 0.01

Kanungu 0.0085 0.31 0.0114 0.14

Tororo 0.0097 0.26 0.0168 0.18

Table 3 Changes in pairwise genetic differentiation  (FST) between the 2011–2012 and 2015–2016 study periods among study sites

2011–2012 2015–2016

Jinja Kanungu Tororo Jinja Kanungu Tororo

Jinja 0.0000 0.0275 0.0145 Jinja 0.0000 0.0384 0.0353

Kanungu 0.0275 0.0000 0.0503 Kanungu 0.0384 0.0000 0.0585

Tororo 0.0145 0.0503 0.0000 Tororo 0.0353 0.0585 0.0000
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and MOI between 2011–2012 and 2015–2016. This sug-
gests a relatively stable maintenance of high parasite 
genetic diversity and MOI across the three study areas, 
underscoring the importance of continued surveillance 
and monitoring of malaria control efforts.

Overall, the genetic diversity of P. falciparum remained 
generally high, with mean expected heterozygosity  (He) 
values exceeding 0.7 across all study areas over time. 
This likely reflects significant malaria transmission inten-
sity, even in regions like Jinja, which is classified as hav-
ing low transmission. These findings align with reports 
from other regions, including Eswatini, where malaria 
transmission has decreased due to intensive control 
measures (e.g., insecticide-treated nets, indoor resid-
ual spraying, and access to diagnostics and treatment), 
yet P. falciparum genetic diversity remains high due to 
the importation of malaria parasites  from neighboring 
areas with high transmission [55, 56]. This highlights 
that even in areas with reduced malaria  transmission, 
regional transmission dynamics and ongoing malaria 
parasites importation continue to maintain high levels of 
genetic diversity. Similarly, in Kenya, regions with high 
malaria transmission intensity still exhibit high P. falci-
parum genetic diversity (mean  He ~ 0.78), despite sub-
stantial control interventions, such as insecticide-treated 
nets, indoor residual spraying [34], and the use of arte-
misinin-based combination therapies [57], which have 
been implemented. The persistence of high genetic diver-
sity in both low- and high-malaria transmission settings 
suggests that gene flow, driven by human migration and 
cross-border transmission, plays a key role in sustain-
ing genetic diversity. This further supports the idea that 
malaria transmission intensity is not the sole determinant 
of P. falciparum genetic diversity.

Our findings suggest that P. falciparum populations 
possess substantial capacity to adapt to environmental 
pressures, such as antimalarial drugs and insecticides 
[21, 58, 59]. The high genetic diversity, along with low 
genetic differentiation between study sites, implies that 
these populations form interconnected reproductive 
units, likely shaped by ongoing gene flow [60]. This is 
consistent with a recent study by Arinaitwe et  al. [61] 
which suggested that human mobility is  a driver of 
malaria transmission and the maintenance of large 
parasite reservoirs in Uganda. Our study also under-
scores the complexity of inferring malaria transmission 
intensity from genetic data alone. External factors like 
human migration and malaria importation from neigh-
boring high-transmission areas complicate the relation-
ship between genetic diversity and local transmission. 
This is evident in regions like Eswatini and Kenya, 
where local transmission and regional dynamics influ-
ence genetic diversity, demonstrating the importance of 

considering broader transmission networks when eval-
uating malaria transmission intensity.

Previous studies have indicated that high P. falcipa-
rum MOI values are commonly found in regions with 
intense malaria transmission [62, 63] and are directly 
linked to transmission intensity [64]. Our study also 
observed a slight temporal decrease in MOI, with 
values in Jinja and Tororo dropping from 2.0 to 1.9 
and from 2.2 to 2.0, respectively, in line with a grad-
ual decline in transmission intensity in these areas 
(Table  1). These decreases align with findings from 
Tororo [65], which indicated reduced transmission fol-
lowing the implementation of vector control measures. 
Research from Grande Comore Island also demon-
strated a decrease in P. falciparum mean MOI values—
declining from 3.11 to 1.63 for msp-1 and from 2.75 to 
1.35 for msp-2—after the introduction of artemisinin-
based combination therapy (ACT) [66]. These trends 
contrast with studies from the Democratic Republic of 
the Congo (DRC), where MOI increased from 3.78 in 
to 4.64 [67], and in Kenya, where MOI increased from 
1.7 to 3.0 [68] despite ongoing interventions. This sug-
gests that the relationship between transmission inten-
sity and MOI is not uniform and can vary by region and 
intervention effectiveness. Moreover, our study found 
that polyclonal infections, constituting more than 50% 
of infections across the three study areas, were com-
mon, in line with observations from mesoendemic and 
holoendemic regions [68, 69]. However, some studies 
have reported a decrease in polyclonal infections fol-
lowing control interventions, suggesting that control 
measures may also influence the genetic structure of 
the parasite population [66].

The longitudinal analysis of LD provided additional 
insights into the genetic structure of P. falciparum pop-
ulations. In regions with high transmission intensity, 
where multiple genetically diverse P. falciparum strains 
circulate, low LD typically reflects ongoing genetic 
recombination between these diverse strains during the 
sexual phase of the parasite’s lifecycle [70]. Conversely, 
in areas with lower transmission intensity, lower LD can 
sometimes reflect the persistence of clonal populations 
of P. falciparum, especially in cases of clonal expansion 
following a bottleneck [71]. Our study revealed a slight 
increase in LD between 2011–2012 and 2015–2016, 
which may reflect reduced genetic recombination, poten-
tially due to a decrease in malaria transmission inten-
sity. This finding aligns with previous studies that noted 
increased LD in areas with reduced malaria transmission 
[51]. The significantly high LD values observed in Jinja 
during 2011–2012 are suggestive of a clonal population 
structure, which is typical of low-transmission areas [26, 
72]. In contrast, study  sites like Kanungu and Tororo 
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exhibited lower LD levels, reflecting the high transmis-
sion intensity in these regions.

As malaria transmission dynamics evolve, continu-
ous monitoring of parasite genetic diversity and MOI is 
crucial for adapting control strategies. Our study offers 
several strengths. It includes diverse sampling locations 
with varying malaria transmission intensities, providing 
a comprehensive comparison of genetic diversity and 
MOI across different transmission settings. The longi-
tudinal design, spanning 2011–2016, tracks changes in 
parasite genetics over time, offering valuable insights into 
the impact of malaria control interventions. In addition, 
the use of microsatellite genotyping provides detailed 
insights into P. falciparum genetic diversity and popula-
tion dynamics.

However, there are some limitations to our study. The 
reliance on neutral microsatellite markers may not fully 
capture the complexity of P. falciparum populations, 
particularly in the context of evolving control strategies. 
While microsatellites remain a cost-effective and acces-
sible tool for assessing genetic diversity and MOI, espe-
cially in regions like Uganda, where advanced genomic 
technologies are less accessible, they have certain limi-
tations. Furthermore, challenges such as sample ampli-
fication issues, unequal sample sizes across sites and 
timepoints, and potential selection bias due to partici-
pant mobility may have influenced our results. To address 
these limitations, we recommend future studies  to 
incorporate newer technologies, such as whole-genome 
sequencing (WGS) or deep amplicon sequencing, and 
expand recruitment across multiple locations to better 
capture transmission dynamics and minimize potential 
biases.

Conclusion
This study provides valuable insights into P. falcipa-
rum genetic diversity and MOI across Uganda’s diverse 
malaria transmission settings. Despite slight decreases 
in both genetic diversity and MOI between the 2011–
2012 and 2015–2016 study periods, overall genetic 
diversity remained high, reflecting the parasite’s robust 
transmission dynamics and ability to adapt to environ-
mental pressures. The findings highlight the need for 
continued surveillance and adaptive malaria control 
strategies, ensuring that interventions remain effective 
across regions with varying transmission intensities. By 
considering regional transmission dynamics, human 
mobility, and the impact of control measures, future 
strategies can better target malaria control efforts and 
address the evolving challenges of malaria management 
in Uganda.
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