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Abstract 

Malaria rapid diagnostic tests (RDTs) targeting the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) are widely 
used to diagnose P. falciparum infection. However, reports of P. falciparum strains lacking PfHRP2 and the structurally 
similar PfHRP3 have raised concerns about the utility and reliability of PfHRP2-based RDTs. This study investigated 
the presence of P. falciparum with pfhrp2 and/or pfhrp3 gene deletions among infected residents in the Lake Victoria 
region, Kenya. Four cross-sectional malaria, surveys were conducted in four sites (Suba South, Mfangano, Kibuogi, 
and Ngodhe) from September 2018 to January 2020. P. falciparum infections were detected using a PfHRP2-based 
RDT, microscopy, and PCR on 9120 finger-prick blood samples. Samples negative by RDT but positive by PCR were 
selected for PCR amplification of pfmsp1 and pfmsp2 to confirm the quality and quantity of P. falciparum DNA. 
Samples positive for both pfmsp1 and pfmsp2 were included for detection of deletions of exons 1 and 2 in pfhrp2 
and pfhrp3 PCR. The multiplicity of infection (MOI) was determined as the higher allele count between pfmsp1 
and pfmsp2. Logistic regression analysis was performed to analyze the association between pfhrp2 and/or pfhrp3 dele-
tions and demographic and infection variables. Of the 445 RDT-negative and PCR-positive samples, 125 (28.1%) were 
analyzed for pfhrp2 and pfhrp3 deletions. Single pfhrp2 deletion, single pfhrp3 deletion, and pfhrp2/3 double dele-
tions were detected in 13 (10.4%), 19 (15.2%), and 36 (28.8%) samples, respectively. Single pfhrp2 deletion was found 
in all sites while single pfhrp3 deletion was found in all sites except Kibuogi. The majority of samples with pfhrp2 and/
or pfhrp3 deletions were submicroscopic (73.5%), asymptomatic (80.9%), and monoclonal (80.9%). Polyclonal infec-
tion was significantly (p = 0.022) associated with a lower odds of pfhrp2/3 double deletion, suggesting detection 
of intact pfhrp2/3 in mixed infections. We report the presence of P. falciparum with pfhrp2/pfhrp3 double deletions 
among asymptomatic and submicroscopic infections in Kenya. Our findings highlight the need for active monitoring 
of pfhrp2 and pfhrp3 deletions at the community level to improve malaria detection and control in the region.
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Background
Malaria is a major vector-borne parasitic disease. In 
2022, approximately 233 million malaria cases and 
580,000 malaria deaths were reported in sub-Saharan 
Africa (SSA), accounting for 94 and 95% of global malaria 
cases and deaths, respectively [1]. Among the species 
that infect humans, Plasmodium falciparum causes the 
most serious health complications and is responsible 
for most deaths each year [1]. Malaria rapid diagnostic 
tests (RDTs) and light microscopy are used to diagnose 
malaria infection. In the last two decades, RDTs use 
has increased, since it requires no equipment and lit-
tle training and can provide results in about 15 min [2]. 
The improved sensitivity and specificity of RDTs have 
enhanced the early diagnosis and treatment of malaria 
[3–5].

Malaria RDTs are lateral flow immunochromatographic 
antigen detection devices. Dye-labeled antibodies first 
bind to the parasite antigen in blood, and the resulting 
complex is captured on the nitrocellulose strip by a band 
of bound antibodies, forming a visible line in the result-
ing window that signifies a positive diagnosis [6]. Most 
RDTs detect two antigens: Plasmodium lactate dehydro-
genase (pLDH), which is present in all Plasmodium spp. 
that infect humans, and P. falciparum histidine-rich pro-
tein 2 (PfHRP2), which is present in P. falciparum only 
[7, 8]. PfHRP2-based RDTs primarily detect the product 
of the pfhrp2 gene on chromosome 8 but can also cross-
react with the product of the pfhrp3 gene on chromo-
some 13, due to extensive sequence homology between 
the two genes [9, 10].

In early 2000s, parasites with partial or total pfhrp2 
and/or pfhrp3 deletions that escaped detection by 
PfHRP2-based RDTs were first reported in Peru [11]. A 
subsequent analysis revealed that a large proportion of 
P. falciparum in the Peruvian Amazon harbored pfhrp2/
pfhrp3 double deletions, calling into question the con-
tinued utility of PfHRP2-based RDTs in the country 
[12]. Currently, several malaria-endemic countries have 
reported parasites with pfhrp2/pfhrp3 double deletions 
[13, 15, 16, 16–19]. These parasites are thought to spread 
preferentially, especially in areas where PfHRP2-based 
RDTs are the only available diagnostic [20].

In SSA, P. falciparum causes over 95% of malaria 
cases. This has led to a preference for PfHRP2-based 
RDTs, which are reported to be more sensitive and heat-
stable than RDTs detecting other malaria antigens [7, 
21]. However, P. falciparum with pfhrp2 and/or pfhrp3 
deletions has been reported in a number of countries, 
including Eritrea [13, 22] and Kenya [9, 23, 24]. Most of 
the reports are based on samples obtained from symp-
tomatic patients seeking care at health facilities. Yet, 
in highly endemic areas, most P. falciparum infections 

are asymptomatic [25], which raises the possibility that 
prevalence of P. falciparum with pfhrp2/pfhrp3 dou-
ble deletions could be underestimated, as asymptomatic 
individuals are often undetected and untreated and serve 
as parasite reservoirs for transmission. To address this 
knowledge gap, we investigated the presence of pfhrp2 
and/or pfhrp3 deletions in P. falciparum among residents 
in Homa Bay County, Kenya, a region with high malaria 
endemicity bordering Lake Victoria [26].

Methods
Ethics statement
Ethical approval was provided by the Kenyatta National 
Hospital/University of Nairobi Ethical Research Com-
mittee in Kenya (No. P7/1/2012), the Mount Kenya 
University Independent Ethical Research Committee 
(MKU–IERC; approval No. 1574, 2848 and 2565), and 
the Ethics Committee of Osaka Metropolitan University 
(approval No. 3206).

Consent forms detailing the purpose, procedure, ben-
efits and potential risks were distributed to students at 
least 1  day before the survey. The students were asked 
to request their parents or guardians to read and sign 
their consent forms. Only students who provided signed 
consent forms from their parents or guardians were 
included. Verbal assent was obtained from each student 
at enrollment. For adult participants, written informed 
consent was provided at enrollment.

Characteristics of the study area
The study was conducted in Suba South, Mfangano, 
Ngodhe, and Kibuogi in Homa Bay County in west-
ern Kenya bordering Lake Victoria (Fig.  1). Mfangano 
(65  km2) is a large, rural island with a population of 
24,123 [27]. The island is connected to Mbita Town by 
scheduled ferry services and private motorboats. The 
island has ten public health facilities: five dispensaries, 
four health centers, and one hospital. Kibuogi (1.5  km2) 
and Ngodhe (0.8  km2) are small islands, each with a 
population of about 500 [28]. Kibuogi is connected to 
Mfangano and lakeshore communities in Suba South by 
private boats but has no public health facilities. Ngodhe 
is connected to Rusinga Island and Mbita Town by pri-
vate boats and is served by one dispensary. Suba South 
has a population of 122,383 and consists of smaller vil-
lages such as Ungoye and Roo [27]. It is connected to 
Mbita Town by an unpaved road (Fig. 1).

All study sites are located in the Lake Endemic Zone, 
which has the highest malaria prevalence in Kenya [8], 
although significant local variations exist [29]. The zone 
generally experiences a long rainy season from March to 
June and a short rainy season from November to Decem-
ber, with some annual variations. Annual rainfall ranges 
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from 250 to 1000 mm. Malaria incidence peaks approxi-
mately 1–2 months after the rainy season [26]. The main 
malaria vectors in the region are Anopheles gambiae 
s.s., An. arabiensis, and An. funestus [30]. Vector control 
measures in Kenya include the mass distribution of long-
lasting insecticidal nets (LLINs) every 3  years, which 
began in 2004. Since 2018, indoor residual spraying (IRS) 
with the organophosphate insecticide Actellic 300CS has 
been implemented in Homa Bay County annually, further 
reducing the malaria prevalence [31]. In addition, the 
RTS,S/AS01 malaria vaccine has been piloted in parts of 
the county since 2019 [32]. Currently, malaria diagnosis 
in most health care facilities within the study area relies 
on PfHRP2-based RDTs, and artemisinin-based combi-
nation therapies (ACTs) remain efficacious in Western 
Kenya [33]. Despite these measures, persistent malaria 
transmission is maintained by asymptomatically infected 
individuals with submicroscopic parasitemia [31].

Field and laboratory methods
We conducted four cross-sectional malariometric school 
surveys in the study sites in September 2018, January 
2019, September 2019, and January 2020. Schools serving 
the main population centers in the study area were listed, 
after which approval from the school administrations 
to conduct our surveys was sought. In each population 
center, one to two schools that had provided approval 
were selected based on ease of access and availability that 
accommodated our survey schedule.

The primary purpose of our surveys was to determine 
the prevalence of Plasmodium infections in the study 
area. Our previous study [25] indicated local heteroge-
neity in Plasmodium prevalence, resulting in estimates 

of required sample sizes ranging from 145 to 344. From 
each selected school we obtained a list of enrolled stu-
dents and selected a minimum of 150 children randomly. 
Since the populations of Kibuogi Island and Ngodhe 
Island were relatively small (approximately 500 each), 
the entire populations including adults were recruited. In 
January 2019 Ngodhe and Kibuogi were not included due 
to an ongoing intervention study, thus surveys were con-
ducted on Mfangano and in Suba South only.

Demographic information including sex, age, and vil-
lage of residence and self-reported LLIN use on the 
night before the survey were recorded for all study par-
ticipants. Axillary body temperature was measured using 
digital thermometers, and fever was defined as axillary 
temperature ≥ 37.5 °C.

Finger-pricked blood sample was obtained for detec-
tion of P. falciparum infections by RDT, microscopy, and 
PCR in all years and locations. P. falciparum infections 
were diagnosed on-site using the PfHRP2-based Para-
check Pf RDT (Orchid Biomedical Systems, Goa, India) 
according to the manufacturer’s instructions. Partici-
pants with positive RDT were given the standard course 
of artemether–lumefantrine treatment (and antipyretic 
treatments if the infection was accompanied with fever) 
with dosage instructions per recommendation by the 
Ministry of Health in Kenya.

Thin and thick blood films were prepared on site and 
transported to our field laboratory in Mbita Town. Thin 
films were fixed with methanol and both thick and thin 
films were stained with 3% Giemsa solution for 30 min. 
Stained blood films were examined independently by two 
experienced microscopists for Plasmodium infections 
and species identification [34]. A sample was declared 

Fig. 1  Study sites in Homa Bay County, Kenya 2018-2020. Inset shows the location of the study area. Approximate locations of schools are 
represented by colored points
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negative after examination of at least 100 oil immer-
sion microscopic fields at 1000X magnification [34]. 
Discrepant results were resolved by a third experienced 
microscopist who was blinded to results of the first two 
examinations. A finger-pricked blood sample (70 μl) was 
drawn using a 75-mm heparinized microhematocrit cap-
illary tube (Thermo Fisher Scientific, MA, USA), spotted 
onto Whatman ET31 Chr filter paper (Whatman Inter-
national, Maidstone, UK), and allowed to dry at ambient 
temperature. The dried blood spot (DBS) was placed in a 
small zipper plastic bag and stored at − 20 °C until DNA 
extraction.

DNA extraction and PCR diagnosis
The procedure for sample selection is shown in Fig.  2. 
DNA extraction and PCR diagnosis were performed 
at Osaka Metropolitan University in Osaka, Japan. The 
QIAamp Blood Mini Kit (QIAGEN, Germantown, USA) 
was used to extract DNA from a quartered DBS (equiva-
lent to 17.5 µl of blood) according to the manufacturer’s 

instructions. DNA was eluted in 150 µl of elution buffer 
(10 mM Tris–Cl and 0.5 mM EDTA; pH 9.0) and stored 
at −  20  °C. Plasmodium infections were detected by 
a nested PCR targeting the multi-copy mitochondrial 
cytochrome c oxidase subunit III (cox3) gene, using 3 µl 
of extracted DNA (equivalent to 0.35 µl of blood) as tem-
plate [35].

P. falciparum DNA quality control
To ensure the presence of P. falciparum nuclear DNA, 
all samples positive for P. falciparum by the cox3 PCR 
but negative by RDT underwent DNA quality control by 
nested PCR amplification of the single-copy P. falciparum 
merozoite surface protein 1 (pfmsp1) and P. falciparum 
merozoite surface protein 2 (pfmsp2) genes following 
the WHO-recommended protocol [36]. For both genes, 
the 20-μl primary reaction consisted of 10 μl of PrimeS-
TAR Max DNA Polymerase Mix (Takara, Kyoto, Japan), 
0.4 μM of each primer, and 3 μl of extracted DNA, and 
the 10-μl nested reactions consisted of 5 μl of PrimeSTAR 

Fig. 2  Flowchart of dry blood spots (DBS) selection for detection of pfhrp2 and pfhrp3 deletions
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Max DNA Polymerase Mix, 0.4 μM of each primer, and 
1  μl of product from the primary reaction as template. 
Nested rounds were conducted separately for each allelic 
family (pfmsp1: MAD20, K1, and RO33; pfmsp2: FC27 
and 3D7/IC1). PCR primer sequences and cycling condi-
tions are described in Table S1. PCR products from the 
nested rounds were visualized on 2% agarose gel electro-
phoresis. Alleles were identified by distinct bands of dif-
ferent sizes, and the multiplicity of infection (MOI) was 
determined as the higher allele count between pfmsp1 
and pfmsp2. Only samples positive for both pfmsp1 and 
pfmsp2 amplifications were included in the pfhrp2 and 
pfhrp3 deletion analysis.

Evaluation of pfhrp2 and pfhrp3 deletions
Deletions of exons 1 and 2 in pfhrp2 and pfhrp3 were 
determined by nested PCR [36]. Primary and nested PCR 
reactions followed the same protocol as for pfmsp1 and 
pfmsp2, with minor adjustments: primer concentration 
(0.2 μM) and template volume for nested rounds (2 μl of 
primary product). Primer sequences and cycling condi-
tions are detailed in Table S1.

Nested PCR products were visualized on 2% agarose 
gel electrophoresis. Since the non-expression of pfhrp2 
and/or pfhrp3 proteins arises from frameshift muta-
tion caused by exon 1 and exon 2 deletions (region cor-
responding to the target epitope of PfHRP2-based RDT), 
samples failing to amplify either or both loci were consid-
ered to harbor P. falciparum with pfhrp2 and/or pfhrp3 
deletions. Genomic DNA isolated from cultured P. fal-
ciparum 3D7 strain (provided by Nagasaki University 
Institute of Tropical Medicine) served as a positive con-
trol for all PCR reactions.

Data analysis
PCR-confirmed P. falciparum infections without fever 
were considered asymptomatic. P. falciparum infections 
positive by the mitochondrial cox3 PCR but negative by 
microscopy were considered submicroscopic. The sensi-
tivity and specificity of RDT and microscopy were deter-
mined using PCR as the reference. Mann–Whitney and 
Kruskal–Wallis tests were used to compare MOI across 
different groups, while Pearson’s chi-square and Fisher’s 
exact tests were used to compare proportions among 
groups. Odds ratios (OR) and associated 95% confidence 
interval (CI), and probability (p) values were generated 
using logistic regression models to assess the association 
between the presence of single pfhrp2 deletion, single 
pfhrp3 deletion, and pfhrp2/pfhrp3 double deletions and 
the following predictor variables: age, sex, MOI, asymp-
tomatic infection, submicroscopic infection, study site, 
and study period. Multiple imputation was used to han-
dle missing demographic data [37]. Missing values for age 

and sex were imputed using the linear regression and the 
logistic regression models, respectively. The imputation 
procedure included all predictor variables and outcome 
variables used in the final logistic regression models. Ten 
imputed datasets were created. The Hosmer–Lemeshow 
goodness-of-fit test was performed to evaluate the fit of 
the models for both non-imputed and imputed datasets. 
P < 0.05 were considered statistically significant. Statisti-
cal analysis was conducted in Stata 18 (StataCorp, Col-
lege Station, USA).

Results
Study population
A total of 9120 participants were enrolled in this study, 
with more than 2000 enrolled at each survey time point 
except January 2019. Of all survey participants, 41.0% 
were from Mfangano Island, followed by 35.8% from 
Suba South, 14.8% from Ngodhe Island, and 8.5% from 
Kibuogi Island. The median age of participants was 
9.0  years (IQR 6–12) and 47.9% of participants were 
male. Approximately 16.0% of all participants had fever, 
and 49.4% reported LLIN use the night before the survey 
(Table 1).

P. falciparum infection prevalence and diagnostic 
performance
Overall P. falciparum prevalence by RDT, microscopy, 
and PCR was 10.9, 6.6, and 15.9%, respectively (Table 2). 
By all detection methods, prevalence was highest on 
Mfangano Island and varied significantly (all p < 0.001) 
across sites (Table  2). Of the 1450 cox3 PCR-positive 
samples, 852 (58.8%) were microscopy-negative or sub-
microscopic and 1165 (83.8%) were asymptomatic. A 
total of 445 (30.7%) RDT-negative and cox3 PCR-positive 
samples including 370 submicroscopic infection samples 
were included in the P. falciparum nuclear DNA quality 
check (Table 2, Fig. 2).

Using PCR as reference, the sensitivity and specificity 
of RDT were 69.1% (95% CI 68.7–69.5) and 94.9% (95% 
CI 94.5–95.3), respectively, while those of microscopy 
were 41.2% (95% CI 40.9–41.5) and 91.3% (95% CI 90.9–
91.7), respectively.

Pfhrp2 and/or pfhrp3 deletions
Of the 445 cox3 PCR-positive but RDT-negative samples, 
125 (28.1%) were positive for both pfmsp1 and pfmsp2 
PCR (Table  3). Most of these 125 infections were sub-
microscopic (65.6%) and asymptomatic (76.8%). Among 
these samples, 13 (10.4%), 19 (15.2%), and 36 (28.8%) 
samples showed single pfhrp2 deletion single pfhrp3 
deletions, and pfhrp2/3 double deletions, respectively. 
Single pfhrp2 deletion was found in all study sites and 
cross-sectional surveys, while single pfhrp3 deletion was 
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found in all sites except Kibuogi, although the number of 
samples examined was very small (n = 3). Of the samples 
that showed pfhrp2 and/or pfhrp3 deletions, most were 
asymptomatic (80.9%; 55/68) and submicroscopic (73.5%; 
50/68) (Table 3).

Pfmsp1 and pfmsp2 allelic families and MOI
For pfmsp1, K1-type alleles accounted for 55.5% 
(81/146) of detected clones, followed by RO33-type and 
MAD20-type at 27.4% (40/146) and 17.1% (25/146), 
respectively. For pfmsp2, 3D7/IC1-type and FC27-type 
alleles accounted for 58.4% (80/137) and 41.6% (57/137) 
of clones, respectively. Between parasites with and 
without pfhrp2 and pfhrp3 deletions, the distributions 

of allelic families were not significantly different for 
pfmsp1 (p = 0.94) and pfmsp2 (p = 0.57). Specifically, for 
pfmsp1, among samples with single pfhrp2 deletions, 
7 samples had K1-type alleles, 8 samples had RO33-
type alleles, and none had MAD20-type alleles. Among 
samples with single pfhrp3 deletions, 13 had K1-type 
alleles, 4 had MAD20-type alleles, and 5 had RO33-
type alleles. In samples with pfhrp2/3 double deletions, 
20 had K1-type alleles, 9 had MAD20-type alleles, and 
9 had RO33-type alleles. For pfmsp2, 5 samples with 
single pfhrp2 deletions had FC27-type alleles, and 9 
had IC1-type alleles. Among samples with single pfhrp3 
deletions, 10 had FC27-type alleles, and 12 had IC1-
type alleles. In samples with pfhrp2/3 double deletions, 

Table 1  Characteristics of the study population in Homa Bay County, Kenya 2018–2020

NA not applicable as Ngodhe and Kibuogi were not surveyed in January 2019 due to an ongoing intervention study
* Sex was not recorded for 232 (2.5%) participants
† Age was not recorded for 60 (0.7%) participants
‡ Axillary temperature was missing for 256 (2.8%) participants
§ LLIN usage was not recorded for 444 (4.9%) participants

Suba South (n = 3261) Mfangano (n = 3742) Ngodhe (n = 1346) Kibuogi (n = 771) Total (N = 9120)

Year–month

 2018–Sep 1352 977 458 208 2995

 2019–Jan 200 984 NA NA 1184

 2019–Sep 923 716 442 301 2382

 2020–Jan 786 1065 446 262 2559

Sex, n (%)*

 Male 1591 (48.8) 1726 (46.1) 674 (50.1) 377 (48.9) 4368 (47.9)

 Age, Median (IQR)† 9.0 (6–11) 9.0 (6–12) 14.0 (6–31) 12.0 (5–27) 9.0 (6–12)

Fever, n (%)‡

  ≥ 37.5 ℃ 652 (20.0) 582 (15.6) 147 (10.9) 77 (10.0) 1458 (16.0)

LLIN usage previous night, n (%)§

 Yes 1493 (45.8) 2007 (53.6) 645 (48.0) 364 (47.2) 4509 (49.4)

Table 2  P. falciparum infection prevalence by RDT, microscopy, and PCR, Homa Bay County, Kenya 2018–2020

p values were calculated by the χ-square test
* RDT results were invalid or missing for 10 participants

Diagnostic method Suba South 
(n = 3261)

Mfangano (n = 3742) Ngodhe (n = 1346) Kibuogi (n = 771) Total (N = 9120) p value

RDT, n (%)*

 Positive 233 (7.1) 690 (18.4) 60 (4.5) 12 (1.6) 995 (10.9) p < 0.001

 Negative but PCR positive 116 (3.6) 265 (7.1) 54 (4.0) 10 (1.3) 445 (4.9)

Microscopy, n (%)

 Positive 117 (3.6) 435 (11.6) 38 (2.8) 8 (1.0) 598 (6.6) p < 0.001

PCR, n (%)

 Positive 358 (11.0) 956 (25.5) 114 (8.5) 22 (2.9) 1450 (15.9) p < 0.001

 Positive but microscopy3 negative 241 (7.4) 521 (13.9) 76 (5.6) 14 (1.8) 852 (9.3)
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17 had FC27-type alleles, and 20 had IC1-type alleles 
(Table 4).

Monoclonal (MOI = 1) infections accounted for 70.4% 
(88/125) of the samples (Table  4). The mean MOI was 
slightly higher among microscopic infections (1.39 ± SD 
0.57) than submicroscopic infections (1.33 ± SD 0.61), 
although the difference was not statistically significant 
(p = 0.98). The mean MOI was higher in samples with 
intact pfhrp2 and pfhrp3 (1.47 ± SD 0.60) than those with 
gene deletions (1.38 ± 0.87, 1.32 ± 0.58, and 1.17 ± 0.45 
for single pfhrp2 deletion, single pfhrp3 deletion, and 

pfhrp2/3 double deletions, respectively), although the 
difference was not significant (H = 5.19; p = 0.16). Among 
polyclonal (MOI > 1) infections, pfhrp2 and/or pfhrp3 
deletions were detected in 35.1% (13/37) of samples, 
compared to 62.5% (55/88) among monoclonal infections 
(Table 4).

Association between pfhrp2 and pfhrp3 deletions 
and predictors
Multiple imputation was used to address missing data 
for age (7 observations) and sex (1 observation). Neither 

Table 3  P. falciparum with pfhrp2 and pfhrp3 deletions in Homa Bay County, Kenya 2018–2020

RDT-negative, cox3 
PCR positive (N = 445)

Both pfmsp1/2 successfully 
amplified n, (%) (n = 125)

Pfhrp2 single 
deletion (n = 13)

Pfhrp3 single 
deletion (n = 19)

Pfhrp2/3 double 
deletion (n = 36)

No 
deletion 
(n = 57)

Survey period

 2018–Sep 132 40 (30.3) 2 7 12 19

 2019–Jan 89 22 (24.7) 1 4 5 12

 2019–Sep 107 40 (37.4) 5 4 11 20

 2020–Jan 117 23 (19.7) 5 4 8 6

Survey place

 Suba South 116 39 (33.6) 1 5 16 17

 Mfangano 265 73 (27.5) 10 11 18 34

 Ngodhe 54 10 (18.5) 1 3 2 4

 Kibuogi 10 3 (30.0) 1 0 0 2

Microscopy

 Negative 370 82 (65.6) 9 14 27 32

Fever

  ≥ 37.5 ℃ 87 29 (33.3) 2 5 6 16

Table 4  Distribution of pfmsp1 and pfmsp2 allelic families and multiplicity of infection (MOI) in Kenya, 2018–2020

* Calculated by the Kruskal–Wallis test

Single pfhrp2 deletion Single pfhrp3 deletion Pfhrp2/3 double 
deletion

No deletion p value*

Pfmsp1

 K1 7 13 20 41

 MAD20 0 4 9 12

 RO33 8 5 9 18 0.84

Pfmsp2

 FC27 5 10 17 25

 3D7/IC1 9 12 20 39 0.57

MOI

 1 10 14 31 33

 2 2 4 4 21

 3 0 1 1 3

 4 1 0 0 0

 Mean MOI (SD) 1.38 (0.87) 1.32 (0.58) 1.17 (0.45) 1.47 (0.60) 0.16
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pfhrp2 nor pfhrp3 deletions were statistically signifi-
cantly associated with any predictor variables. However, 
polyclonal infections were significantly associated with 
a lower odds of pfhrp2/3 double deletions (OR = 0.286, 
p = 0.022) (Table 5). The results were similar for imputed 
and non-imputed models (Table S2).

Discussion
This study reveals the presence of pfhrp2/3 double dele-
tions among mostly asymptomatic P. falciparum infec-
tions in Homa Bay County, western Kenya. Our findings 
demonstrate that these deletions were found across 
multiple study sites and survey time points. Most para-
sites with gene deletions were found in Suba South and 
Mfangano, where malaria prevalence was relatively high. 
Infections with P. falciparum lacking pfhrp2 and/or 
pfhrp3 were mostly asymptomatic and submicroscopic, 
highlighting the potential for these parasites to spread 
undetected.

A previous study [9] reported the presence of P. fal-
ciparum lacking either pfhrp2 or pfhrp3 in Kenya in 
2014. We confirm previous findings and report the pres-
ence of P. falciparum lacking both pfhrp2 and pfhrp3 in 
asymptomatic infections from as early as 2018. Similar 
observations of P. falciparum with pfhrp2/pfhrp3 double 
deletions were reported among symptomatic patients in 
Kilifi County in 2019–2020, a moderate to high malaria 
transmission setting along the Indian Ocean [23]. Since 
PfHRP2-based RDTs are widely used as a malaria diag-
nostic tool in Kenya, the emergence and potential 
expansion of these parasites with pfhrp2 and/or pfhrp3 
deletions pose a threat to malaria control and elimination 
programs in Kenya.

P. falciparum with single pfhrp2 deletion was 
detected in all four study sites and those with single 
pfhrp3 deletion and pfhrp2/3 double deletions were 
detected in all sites except Kibuogi. When considered 

with results from a previous study in the same county 
reporting P. falciparum with either pfhrp2 or pfhrp3 
deletion [9], our data suggest that the use of PfHRP2-
based RDTs might have further selected for parasites 
most likely to evade detection i.e. P. falciparum with 
pfhrp2/pfhrp3 double deletions. This is corroborated by 
our observation that of all samples containing P. falci-
parum with pfhrp2 and/or pfhrp3 deletions, more than 
half harbored P. falciparum with pfhrp2/3 double dele-
tions. Furthermore P. falciparum with pfhrp2/3 double 
deletions was most frequently observed in Suba South 
and Mfangano, where parasite prevalence was higher, 
transmission was more intense [29], and the use of 
PfHRP2-based RDTs was likely more common. While 
we previously demonstrated extensive gene flow among 
P. falciparum populations on different islands in the 
study area [28, 38], the genetic relationships among P. 
falciparum with pfhrp2 and/or pfhrp3 deletions iden-
tified in this study remain unclear. Other studies have 
reported that gene deletion strains are more likely to be 
found within populations with a common genetic back-
ground, regardless of malaria prevalence [39].

Of the 125 samples tested for pfhrp2 and pfhrp3 dele-
tions in this study, polyclonal infection was more com-
mon in samples with intact pfhrp2 and pfhrp3. Our 
findings align with studies from Cameroon, India [40], 
and South Sudan [41]. It is possible that in polyclonal 
infections, parasites with gene deletions were co-infected 
with those with intact pfhrp2 and/or pfhrp3. Success-
ful PCR amplification of pfhrp2 and/or pfhrp3 from the 
latter parasites might have masked the presence of the 
former. Furthermore, co-infection of P. falciparum with 
deleted and intact pfhrp2 and pfhrp3 could have led to 
positive RDT diagnosis, which was excluded in our anal-
ysis. Our PCR-based detection methodology and sam-
ple selection strategy likely underestimated the number 

Table 5  Association between predictors and pfhrp2 and pfhrp3 deletions in Homa Bay County, Kenya, 2018–2020

* p = 0.022
† Hosmer–Lemeshow goodness-of-fit test

Single pfhrp2 deletion Single pfhrp3 deletion Pfhrp2/3 double deletion
Predictors OR (95% CI) OR (95% CI) OR (95% CI)

Age 1.034 (0.981–1.090) 1.008 (0.945–1.074) 0.996 (0.949–1.046)

Sex 0.746 (0.215–2.588) 1.278 (0.427–3.827) 0.880 (0.384–2.016)

Polyclonal infection 0.647 (0.153–2.734) 0.867 (0.251–3.001) 0.286* (0.0981–0.835)

Asymptomatic infection 0.844 (0.151–4.697) 1.678 (0.333–8.455) 1.120 (0.365–3.438)

Submicroscopic infection 1.872 (0.488–7.172) 1.740 (0.501–6.047) 1.761 (0.692–4.483)

Study site 0.557 (0.297–1.045) 1.041 (0.702–1.545) 1.191 (0.876–1.619)

Study period 1.556 (0.853–2.837) 0.932 (0.567–1.532) 1.142 (0.781–1.670)

HL chi2† (p value) 5.57 (0.6955) 10.75 (0.2160) 10.69 (0.2199)
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of samples containing P. falciparum with pfhrp2/pfhrp3 
double deletions.

Our previous study [26] and this study indicate that 
most P. falciparum infections in the study area were sub-
microscopic and asymptomatic, which represented a hid-
den reservoir to sustain transmission, because individuals 
with these infections were unlikely to seek diagnosis and 
treatment in health facilities. Since P. falciparum in these 
asymptomatic infections were not under selection by 
PfHRP2-based RDTs, detection of parasites with pfhrp2 
and/or pfhrp3 deletions, especially those with double 
deletions in our samples was unexpected. Nair et al. [42] 
used competitive growth assays to demonstrate the sub-
stantial fitness cost incurred by single pfhrp2 deletion 
and pfhrp2/3 double deletions, which implies that in our 
study area with co-circulating P. falciparum with intact 
and deleted pfhrp2 and/or pfhrp3, those with deletions 
would likely die out especially among asymptomatic (and 
undiagnosed) infections. However, we observed P. falci-
parum with pfhrp2/3 double deletions in all study sites 
except Kibuogi throughout the study period. In addition, 
a mathematical model has identified Kenya as a country 
at high risk for the emergence and spread of P. falciparum 
with pfhrp2/3 double deletions [43]. Therefore, system-
atic evaluation of the diagnostic performance of PfHRP2-
based RDTs is warranted.

A recent report from Ethiopia [44] indicated that a 
kelch13 (K13) mutation that confers partial resistance 
to artemisinin was found more frequently in P. falcipa-
rum with pfhrp2 and/or pfhrp3 deletions, suggesting a 
potentially different mechanism by which pfhrp2 and/
or pfhrp3 deletions might be maintained in a population 
of mixed parasites with intact and deleted pfhrp2 and/or 
pfhrp3, as in our study area. No evidence of artemisinin 
resistance in P. falciparum from the study area was found 
in our previous study [45], however artemisinin-resist-
ant P. falciparum have emerged in neighboring Uganda 
[46, 47] and Tanzania [48], and in the wider Great Lake 
region of east Africa [49, 50]. Cross-border movement 
likely resulted in the introduction of artemisinin-resist-
ant P. falciparum from Uganda to Busia County, Kenya 
[51]. While challenges and initiatives to control “border 
malaria” have been well documented, coordinated poli-
cies among east African nations may be urgently required 
to respond to the potential emergence and spread of 
drug- and diagnostic-resistant P. falciparum [52].

This study has several limitations. Most of the PCR-
confirmed P. falciparum infections in this study were 
submicroscopic, therefore only about nine percent of all 
infections were included in the analysis of pfhrp2 and 
pfhrp3 deletions, and the prevalence of parasites with 
deletions could not be determined. This study used the 

conventional PCR-based protocol to detect pfhrp2 and 
pfhrp3 deletions [36], which was originally developed 
for symptomatic malaria cases with higher parasitemia. 
More sensitive analytical methods based on qPCR [53, 
54] and droplet digital PCR (ddPCR) [55] have recently 
been developed that may overcome the challenges of 
detecting pfhrp2 and/or pfhrp3 deletions in low-density 
and polyclonal infections. No breakpoint analysis was 
performed to determine the extent to which pfhrp2 and 
pfhrp3 were deleted, and no genetic/genomic analysis 
was conducted to examine if P. falciparum with pfhrp2 
and/or pfhrp3 deletions from different study sites and 
different years shared similar genetic backgrounds.

Conclusions
We demonstrated the presence of P. falciparum with 
single pfhrp2 deletion, single pfhrp3 deletion, and 
pfhrp2/3 double deletions among asymptomatic infec-
tions in western Kenya. These findings indicate the 
need to enhance active molecular surveillance of pfhrp2 
and pfhrp3 deletions to monitor the performance of 
PfHRP2-based RDTs to ensure effective malaria con-
trol and elimination. Further research is needed to 
understand the genetic relationships among parasites 
with pfhrp2 and pfhrp3 deletions, their prevalence and 
impact on malaria transmission dynamics.
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